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Concurrent Visualization in a

Production Supercomputing Environment

David Ellsworth, Bryan Green, Chris Henze, Patrick Moran, and Timothy Sandstrom

Abstract— We describe a concurrent visualization pipeline designed for operation in a production supercomputing environment.
The facility was initially developed on the NASA Ames “Columbia” supercomputer for a massively parallel forecast model (GEOS4).
During the 2005 Atlantic hurricane season, GEOS4 was run 4 times a day under tight time constraints so that its output could be
included in an ensemble prediction that was made available to forecasters at the National Hurricane Center. Given this time-critical
context, we designed a configurable concurrent pipeline to visualize multiple global fields without significantly affecting the runtime
model performance or reliability. We use MPEG compression of the accruing images to facilitate live low-bandwidth distribution of
multiple visualization streams to remote sites. We also describe the use of our concurrent visualization framework with a global ocean
circulation model, which provides a 864-fold increase in the temporal resolution of practically achievable animations. In both the
atmospheric and oceanic circulation models, the application scientists gained new insights into their model dynamics, due to the high
temporal resolution animations attainable.

Index Terms—Supercomputing, concurrent visualization, interactive visual computing, time-varying data, high temporal resolution
visualization, GEOS4 global climate model, hurricane visualization, ECCO, ocean modeling.
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1 INTRODUCTION

In one of the original reports delineating the field of scientific visual-
ization, Visualization in Scientific Computing, McCormick et al. [19]
described a vision for the future where scientists could analyze and
interpret data from supercomputing calculations as they were running.
They called this capability interactive visual computing, also known
as concurrent visualization. Related ideas have been developed fur-
ther in the visualization community (see next section), but in general
have seen limited use by the computational science community.

There are two primary benefits of concurrent visualization. First, it
shows a view of the current state of a calculation, which allows runtime
monitoring, steering, or perhaps termination. Second, concurrent vi-
sualization allows higher temporal resolution visualization compared
to traditional post-processing because I/O and storage space require-
ments are largely obviated. This higher temporal resolution may show
features in a simulation that would otherwise not be visible.

Given these benefits, we implemented a concurrent visualization
pipeline within the “Columbia” supercomputer environment at NASA
Ames Research Center. Our driving application was the MAP’05
project [18] led by a team at NASA Goddard Space Flight Center.
The project used Columbia to run 5-day weather forecasts every six
hours during the 2005 hurricane season (June to November). The hur-
ricane tracks—not our visualizations—from each simulation run were
sent to Florida State University and combined with other model fore-
casts as part of a “superensemble” [9], which uses machine learning
techniques to create a single forecast. The single forecast was made
available to the National Hurricane Center.

The MAP’05 project’s high profile and tight schedule imposed sev-
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eral unusually strict requirements on the development of our visualiza-
tion pipeline. Because of the hard deadlines for submitting forecasts to
FSU, our visualization system could not significantly impede the sim-
ulation, and most importantly could not cause it to fail. In addition,
any modifications to the simulation code had to be minimized in or-
der to facilitate validation. Partial failures of the visualization pipeline
had to be handled gracefully – we wanted to avoid killing the entire
process, if possible, and, since runs were often unattended, partial or
catastrophic errors in one run should not affect the next run. A fi-
nal requirement stemmed from the fact that the MAP’05 researchers
are across the country from the supercomputer, and are reachable only
over a shared, medium-speed network connection.

These requirements led us to a design which is different than earlier
developed systems (many of which are described in the next section).
Our system limits modifications to the simulation code by having it
only copy data to a shared memory segment. The next stage in the vi-
sualization pipeline receives data via the shared memory segment, and
it runs on separate processors in parallel with the simulation. This de-
coupling effectively prevents any visualization failures from adversely
affecting the simulation. Data are sent from the shared memory seg-
ment (via an intermediate system) to multiple rendering nodes, each
of which produces a time-varying visualization. Frames from the vi-
sualizations are compressed using MPEG encoding, and the resulting
MPEG streams can be sent to the remote sites, where the currently
completed time steps of the forecast are continuously shown in an an-
imation loop. Using MPEG compression greatly decreased the net-
work requirements; overall we saw a 66 to 1 compression ratio. The
visualizations are both rendered and displayed on small visualization
clusters. For display we typically used a 3×3 tiled array, and showed
different simulation variable/view combinations on each of the nine
displays. Figure 4 shows a typical configuration.

The rest of the paper is structured as follows. First, we describe
some related work, and then present an overview of the MAP’05 simu-
lation project. Next, we describe our concurrent visualization architec-
ture, first giving an overview, and then describing the data extraction,
visualization, and MPEG production portions of the pipeline. The fol-
lowing sections describe the system’s effectiveness for the MAP’05
project, and briefly discuss the use of our system with a second appli-
cation. We finish with conclusions and some areas of future work.

2 RELATED WORK

Concurrent visualization has been explored by many different groups.
However, we did not find an existing system that met our application’s
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Fig. 1. A frame from a concurrent visualization animation of GEOS4, showing Hurricane Wilma approaching Florida. The frame shows the specific
humidity (Q, mass(H20)/mass(air)), summed over all elevations and mapped onto luminosity.

requirements. For example, the pV3 system [12] computes requested
visualizations using the simulation processors, which could impact the
simulation’s run time and reliability. Other earlier efforts in this cate-
gory are SCIRun [14], the commercial package RVSLIB [7], the Earth
Simulator’s geoFEM [20], and VisIt [5].

The requirement of sending multiple visualizations across a
moderate-speed network as they were generated dictated our choice
of compressed MPEG streams. Earlier systems sent the original
data [16], data extracts [12], geometry [20], or images [7, 20] to the
remote system. Distributed visualization systems built using AVS [4]
or CM/AVS [22] send inter-module communication over the network,
which we expect would require too much bandwidth for our purposes.

The requirement of minimal modifications to the simulation code
eliminated approaches that tightly couple the simulation to the visu-
alization. Problem solving environments, such as SCIRun [14] and
Cactus [1], are examples of this approach. Other visualization sys-
tems built as libraries or frameworks also require substantial modifi-
cations to the application. Two such frameworks are the CUMULVS
parallel processing framework [10], and the VisAD [13] component
visualization framework. The DICE [6] system’s use of Network Dis-
tributed Global Memory for transport similarly does not meet the min-
imal modification requirement.

The use of compression for the remote transmission of animations
is widespread. Two packages that use compression for remote visual-
ization are RVSLIB [7] and ParaView [3].

3 HARDWARE RESOURCES

The MAP’05 simulations were run on the Columbia supercomputer at
NASA Ames. Columbia contains 20 SGI Altix nodes, each of which
has 512 Itanium 2 processors and 1 TB of memory. Each processor
in a node has cache-coherent access to all the node’s memory, and the
nodes are connected by Ethernet and InfiniBand. The GEOS4 forecast
runs were run on one 512-processor node.

Our rendering cluster has 50 dual-processor 1.67 GHz Athlon sys-
tems, each with a graphics card and a 100Mbit connection to a private
net. A separate 16-processor Altix system, called chunnel, serves as
an intermediary between the Columbia compute nodes (via one 4x In-
finiBand link) and the graphics cluster switch (via 8 Gigabit Ethernet
connections).

The current bottleneck in our system is the 100Mbit connections to
the rendering cluster nodes. This precludes transferring 3D fields for
the GEOS4 application.

4 GEOS4 APPLICATION OVERVIEW

The MAP’05 project employed the fourth generation of the Goddard
Earth Observing System (GEOS) suite of models, developed at NASA
Goddard. GEOS4 is an implementation of a finite-volume general cir-
culation model (fvGCM), which uses a Lin-Rood semi-Lagrangian dy-
namical core [17] in conjunction with the Community Climate Model
(CCM3) [15] for physical parameterizations and land surface model
[2].

The production form of GEOS4 is a nominal 1/4 degree global
model, using a standard latitude-longitude staggered grid of dimen-
sions 1000×721×32 (23 million cells). Three-dimensional scalar and
vector-component quantities defined on the grid are represented in
double precision and thus require 1000×721×32×8 = 184.6 Mbytes
of storage each. Horizontal 2D scalar fields occupy 5.8 Mbytes each,
and represent either surface quantities or values representing an aver-
age over the entire vertical column. Parallelism is implemented using
a one-dimensional latitudinal decomposition, with 3 ghost cell lay-
ers to the north and south of each computational subdomain. On the
Altix architecture, a hybrid MPI-OpenMP parallelism strategy was
employed. This uses both the distributed-memory MPI and shared-
memory OpenMP programming models. Production runs used 60 MPI
processes with 4 OpenMP threads each (240 processors total). The
runs simulated 5 full days of atmospheric dynamics, using integration
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time steps that represented 450 seconds of physical time (960 time
steps total). Some test runs instead used 480 processors, 480 time
steps, or both.

Our standard visualization configuration copied about 900 GB of
simulation data per run. Of this, 177 GB, or one 3D field, was ver-
tically integrated into a 2D field, and 709 GB, four 3D fields, had a
horizontal 2D slice removed from each 3D field. In addition, two 2D
fields were used, consisting of 11 GB. After conversion to 32-bit float-
ing point, the resulting seven 2D fields (totaling 19.4 GB) were sent
from the Columbia system to the rest of the pipeline.

Wall-clock times for the production runs took about 55 minutes. We
saw a minimum wall clock time per integration time step of 2.5 sec-
onds. This is less than the nominal time per time step of 55×60/960
= 3.4 seconds because the simulation spends a significant part of the
total run time doing I/O for initialization and diagnostic output. Thus
our system must run at the 2.5 second rate if we are to visualize ev-
ery integration time step without impeding the simulation. Adding
buffering to the system would not substantially relax the frame rate re-
quirement unless many frames of buffering were added, requiring sub-
stantial memory. This is true because the time steps where the pipeline
could catch up, the time steps that take much longer than 2.5 seconds,
are widely spaced. However, additional buffering would reduce the
number of dropped frames due to temporary pipeline hesitations.

Forecast runs had to be completed in roughly a two hour window
before the superensemble submission deadline. In addition to the 55
minute forecast calculations, roughly 30 minutes of post-processing
was necessary before results submission. This tight schedule drove
our reliability goals.

5 CONCURRENT VISUALIZATION SYSTEM OVERVIEW

Figure 2 shows an overview of the complete concurrent visualization
pipeline. This pipeline is divided into three sections: data extraction,
visualization, and MPEG production.

The pipeline starts with data extraction. The GEOS4 simulation
runs on one of the Columbia nodes. On that same node but run-
ning on a separate processor is the ibcolumbia process. The sim-
ulation processes copy data into a shared memory segment. Then,
ibcolumbia does any remaining data formatting and copies the data
over InfiniBand to another Columbia node called chunnel. We use
this system because it is the gateway to the rendering cluster’s private
network.

The visualization portion of the pipeline starts on the chunnel

system. A process called ibchunnel receives data from the Infini-
Band network, and writes it to a shared memory segment. Another
process called gserv copies the data out of shared memory and dis-
tributes it to nodes in the rendering cluster. Those nodes render the
data, and write the resulting images to local disk.

The pipeline continues with MPEG production. Each rendering
cluster node has an MPEG encoder process that encodes frames as
soon as they are written, and writes the resulting MPEG stream to a
file server. The MPEG files are sent, as they are being created, to the
display cluster master node by processes running on the file server.
The final step runs on the display cluster. That cluster’s master node
sends a looped version of each growing MPEG stream to a node on
the cluster for display, doing it in a way that synchronizes the streams.

Our approach takes advantage of the available extra processors and
memory of the Columbia system used, plus its shared memory archi-
tecture. Our system could be adapted for use in distributed-memory
systems by extracting data from each node and sending it to one or
more separate processors for visualization. However, this would still
use the CPU, memory, and interconnect of the running simulation,
possibly affecting its performance noticeably.

The following sections describe each section of the pipeline in more
detail.

6 DATA EXTRACTION

Our visualization pipeline starts with the simulation, or, more specif-
ically, our modifications to it. Our simulation modifications use
a shared memory segment to transfer data to a separate process,

ibcolumbia, which decouples the simulation and visualization code
for improved reliability. Also, using shared memory on the Altix al-
lows for very fast data transfer from the simulation, minimizing impact
to the simulation run time.

We modified the simulation start-up script and instrumented
the simulation code itself. The script modifications activate
ibcolumbia on separate processors and pass configuration data to
it. The simulation code instrumentation causes each MPI thread to reg-
ister its data structures with the visualization pipeline and to send its
data into the pipeline at the completion of each integration time step.

6.1 Start-up Script Modifications

The GEOS4 start-up script requests resources from the batch sched-
uler, arranges input and output files and directories, and specifies a
number of runtime model parameters. Our script modifications ex-
tract many of these parameters into a file so they can be passed to
ibcolumbia. The parameters include the start and stop times of the
simulation, the integration time step size, and the fields selected for
visualization, so we can properly annotate the visualization frames.
They also include the computational domain dimensions, the number
of MPI processes and OpenMP threads, and the total number of model
time steps, since these data are necessary to ibcolumbia to properly
deal with the simulation’s domain decomposition. Other script modi-
fications increase the number of CPUs requested from the scheduler to
accommodate ibcolumbia, then invoke and assign ibcolumbia
to the additional processors so that it does not interfere with any of the
simulation processes. Since ibcolumbia is invoked prior to launch-
ing the simulation code, it creates the shared memory segment for re-
ceiving model output ahead of the simulation.

6.2 ibcolumbia

ibcolumbia serves as the interface between the instrumented sim-
ulation code and the rest of the visualization pipeline. Once started,
it reads the run-specific metadata generated by the start-up script, and
sends some of these data further down the pipeline. It then allocates
the shared memory that is mapped into the simulation MPI processes.
When all MPI processes have copied their field data from a given time
step into the shared memory buffer, ibcolumbia invokes a func-
tion to process the data. This processing may include conversion from
double to single precision, taking 2D slices out of 3D fields, vertical
integration of 3D fields onto 2D, interpolation from a staggered to un-
staggered grid, and so forth. The output from this processing step is
written into a pre-allocated RDMA buffer for fast transfer across the
InfiniBand network to ibchunnel. If ibchunnel has signaled that
it is ready to receive another time step, the transfer is made; otherwise
ibcolumbia drops the time step and sends notice of this event down
the pipeline. This mechanism ensures that only time-consistent frames
are generated.

6.3 Simulation Code Instrumentation

We modified the simulation code by adding three function calls, which
are implemented in a module linked with the main executable. Two of
the functions are called once each during initialization, and the third is
called at the end of each integration time step. All three functions are
called from each MPI process. The first initialization function saves
pointers to its MPI process’s region of the model fields that are avail-
able for concurrent visualization, along with offsets of the MPI sub-
domain into the global computational domain and ghost cell dimen-
sions. These metadata allow the field data to be reassembled from the
per-MPI-thread domains into a single global domain. The second ini-
tialization function is called at the end of the simulation initialization;
it maps the shared memory arena, created by ibcolumbia, into the
address space of each MPI process. After every integration time step,
each MPI process calls the third function, which copies its field data
into the appropriate locations in the shared memory buffer, undoing
the domain decomposition and stripping ghost cells by using metadata
collected in the first initialization function.

We designed this instrumentation code to insulate it from the re-
mainder of the visualization pipeline. If either of the two initialization
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Fig. 2. Our concurrent visualization pipeline. Rounded rectangles indicate systems, and rectangles indicate processes.

functions fails in any MPI process, the copy function becomes a no-
op, leaving the simulation unimpeded. Assuming proper initialization,
the data copy function ensures that all MPI processes have copied their
data into the shared memory arena for processing by ibcolumbia.
If ibcolumbia has not finished accessing the shared memory con-
tents by the time the first MPI process is ready to output its next time
step, copying of that next time step is skipped by all MPI processes,
and notice of this event is sent down the pipeline so that the image
streams are properly marked and counted. This mechanism ensures
that the visualization pipeline processes only fully intact frames at the
maximum rate possible. Alternatively, the user can specify a stride so
that time steps are skipped deterministically. This may be useful if the
highest possible temporal resolution is not desired, or if a particular
run configuration results in the visualization pipeline not being able to
keep up with the simulation. With the production GEOS4 runs on the
Altix, we were consistently able to capture every model time step, and
dropped frames only occasionally due to transient glitches somewhere
in the visualization pipeline.

7 VISUALIZATION

The visualization step of the pipeline breaks the single data stream
from the data extraction step into multiple streams for visualization.
Each branch eventually results in an independent MPEG stream, pro-
duced from a selection of data fields and the visualization techniques
applied to them. The multiple processes in each branch are centrally
managed from the chunnel system.

To be adequately robust and fault tolerant, the remainder of the visu-
alization pipeline has the following characteristics. Failures that occur
in one branch of the pipeline cause truncation of only that branch, and
do not affect the other branches. Other failures may cause the entire
visualization system to terminate, and then automatically restart itself
for the next run. In the worst case, where a failure occurs and attempts
at restarting also fail, the entire pipeline is shut down indefinitely and
the event logged. Extensive logging occurs throughout the process, so
errors can be quickly located and categorized. Missed time steps are
recorded in the logs, as well as being visually documented in the final
product.

There are two distinct functional roles in the visualization part of
the pipeline: process management, which includes configuration and
failure handling; and data management, which includes time step ac-
counting and dispatching. The set of managed processes and the flow
of data are largely determined by configuration files.

7.1 Pipeline Process Management

At the top of the visualization process hierarchy is the gserv dae-
mon. Gserv acts as a central data server, routing incoming model
data to a set of visualization clients. Gserv also acts as a process
manager for two other processes: ibchunnel, which handles In-
finiBand communication; and the Gserv Vis Manager (GVM), which
handles visualization configuration and management.

On startup, gserv forks a copy of itself. The parent gserv
process only monitors the child, restarting it if it fails, and exit-

ing if failures occur repeatedly. The child gserv process monitors
ibchunnel and GVM; if either fails it stops the pipeline and reini-
tializes itself.

GVM is a Perl script that reads the configuration file, and then cre-
ates and manages one branch of the pipeline per visualization, consist-
ing of rendering, encoding, sending, and viewing components, all of
which are created on remote hosts via rsh/ssh connections. In the
event of a localized error, GVM terminates only the portion of failing
branch downstream of the error, allowing any intermediate results to
be archived. In the case of complete failure of the visualization phase,
GVM shuts down the pipeline and exits.

GVM interprets configuration files in order to construct the multiple
branches of the visualization pipeline. When started, GVM receives
the list of fields that are being exported by the current model run. It
uses a table, constructed from a configuration file, to associate avail-
able sets of fields with a particular rendering setup. For each match in
the table a new branch in the visualization pipeline is created: a ren-
dering program is launched on the next available node in the graphics
cluster, the parameters specified in the table entry are passed in, and
the supporting processes for movie generation, distribution, and dis-
play are created.

7.2 Visualization Clients

When GVM starts a visualization client on one of the rendering nodes,
the client is given one or more field names on the command line. These
names are sufficient for the visualization program to independently
register with gserv to receive time step data for those fields as asyn-
chronous events. Then, as frames of data arrive in shared memory
from InfiniBand, gserv sends the appropriate field data to each visu-
alization client using TCP, based on the client registrations.

Our current visualization client is very simple: it can display a 2D
array of either scalar values or the magnitude of vector values using a
luminance map. Parameters specify min-max values, viewpoint, and
so on. While this simple technique has been sufficient for visualizing
global climate models, we can easily incorporate other visualization
techniques.

7.3 Pipeline Data Management

Gserv transfers data to the visualization clients using a distributed
object framework called growler [11], which is capable of manag-
ing dynamic connections from multiple clients. The low level details
of client connections, requests, and data events are handled by the
growler framework. An Interface Definition Language is used to
describe the communication semantics between gserv and the visu-
alization clients.

Time step data are never purposely dropped downstream from
gserv. If data arrive faster than can be consumed, gserv blocks
until the renderers complete, and as a result, ibcolumbia will not
receive the acknowledgment it needs to propagate the next time step.

The visualization portion of the pipeline uses multiple threads for
improved performance in several places. In gserv, field data are

NTR; NAS-07-002; January 2007



ELLSWORTH et al.: CONCURRENT VISUALIZATION IN A PRODUCTION SUPERCOMPUTING ENVIRONMENT

copied from shared memory into buffers for transmission to visual-
ization clients using one thread. Multiple other gserv threads handle
moving the buffers into the TCP stack. In the visualization client, one
thread receives incoming field data, while a second thread renders the
data and writes them to disk.

Once the image has been written to disk, subsequent processing of
the image data is completely decoupled from the simulation time step
loop, and cannot contribute to lost frames.

8 MPEG PRODUCTION

The last stage of the pipeline, MPEG production, begins with the
frames written to local disk by the renderers. GVM manages the pro-
cesses of the MPEG production pipeline, which has three main com-
ponents: encoding, transmission, and viewing.

8.1 MPEG Encoding

An encoding process runs on each of the rendering nodes. On startup,
an introductory MPEG is created, which is used to allow the MPEG
viewers to start up immediately, before the simulation has generated
any time steps. The process then waits for the first real visualization
frame to appear in the local file system. Once frames begin appear-
ing, a modified version of the Stanford PVRG MPEG-1 encoder is
launched to process the frames. We modified the encoder so it will
wait for frames to appear on disk. The resulting MPEGs are written
over NFS and collected on a single shared file server.

For backup purposes, another process uses gzip to losslessly com-
press the frames and write them to the file server for long term storage.
Individual frames on the local disk are deleted once they have been
MPEG encoded and archived.

An example MPEG animation is included on the conference DVD
to illustrate the MPEG output quality.

8.2 MPEG Transmission

Each MPEG can be sent to remote viewing systems while it is being
created. A simple program waits for the MPEG file to be created on
the file server. As the MPEG file grows, this program outputs the new
MPEG data through an ssh pipe to the remote system, where it is
written to disk. The transmission pipeline exits when it finds a MPEG
“Sequence End” marker, which marks the end of the animation.

The bandwidths required to send the MPEG streams are quite
low. For the nine standard views, the average bandwidth required per
MPEG stream ranged from 8 to 39 KB/sec; the total bandwidth for the
nine streams was 157 KB/sec. These bandwidths correspond to com-
pression ratios of 140:1 to 29:1 compared to the original 24-bit RGB
frames. The overall compression ratio was 66 to 1.

8.3 MPEG Viewing

One possible destination for the streaming MPEGs is a hyperwall: a
two-dimensional grid of displays backed by a cluster [21]. For this
project, a 3×3 hyperwall was used, enabling nine simultaneous visu-
alizations of a running simulation on a single wall. A tenth “master”
system controls the nine display systems, and has the single Internet
connection.

Initially, the introductory MPEG animation for each MPEG stream
is displayed on the corresponding display node, and the animation is
paused until enough frames with simulation data have arrived to enable
looping without high-frequency flicker. Then, the viewers on each
display node loop at full speed (30 Hz) over the frames of the MPEG
that have arrived. The animations on the nine nodes are synchronized.

All this is accomplished using mpegsource (a Perl script), and
the mplayer multimedia application. Nine copies of mpegsource
run on the master node, and the mplayer processes on each dis-
play node are configured to read from standard input. Each invocation
of mpegsource first sends the introductory movie to the mplayer
process, which allows it to create an output window. Then, each invo-
cation waits for the MPEG file to grow to 20 data frames before send-
ing the frames to mplayer. The mpegsource scripts then seek
back to the start of the MPEG file, and repeatedly send the MPEG
frames to the mplayer applications. The MPEG files are parsed to

Table 1. Shared Memory Copy Times for 480 Time Steps

MPI x OpenMP Fields Run Time Copy Time

60 x 4 1 3D & 1 2D 3117.52 3.83
120 x 4 1 3D & 2 2D 2239.65 3.02
120 x 4 6 3D & 3 2D 2169.13 12.25
120 x 4 7 3D & 4 2D 2154.75 13.625

ensure that only complete frames are sent to mplayer; incomplete
frames at the end of the file are skipped. The mpegsource processes
also wait on a common barrier (created using sockets to a single bar-
rier process) when they reach end of file, so the nine looping MPEGs
run synchronously.

9 EVALUATION

9.1 Reliability

We were able to meet our primary reliability goal: out of 247 produc-
tion runs with concurrent visualization, there was not a single GEOS4
failure due to the visualization pipeline. The visualization pipeline
itself was not perfectly reliable, however, partly due to system config-
uration changes made during production. Analysis of 132 completed
runs (126,720 time steps) showed that we skipped a total of 87 time
steps, or 0.07% of the total. The skipped time steps were unfortu-
nately distributed over a fairly large number (44) of runs, which we
are currently investigating. Note that 126,720 frames is 70 minutes of
animation.

9.2 Model Runtime Performance

A second important design goal was to impact runtime model perfor-
mance as little as possible. Our design accomplished this by copying
the current simulation time step into shared memory, and then run-
ning all downstream portions of the pipeline while the simulation was
processing the next time step. Thus the majority of the visualization
pipeline ran “off the simulation clock,” predominantly on separate pro-
cessors and systems. Our only direct effect on the model runtime
was due to the data copy, which was done synchronously, i.e., we
blocked the simulation during the copy. The data copy was done in
parallel across all MPI processes, and used shared memory that ex-
ploited the tremendous aggregate memory bandwidth of the Altix. We
determined that an asynchronous strategy involved unnecessary over-
head and complexity, although this might be the preferred choice on
another architecture.

Table 1 shows overall timings from several model test runs with ag-
gregate times of all data copies during the run, measured with high res-
olution hardware timers. (The two visualization initialization function
calls are negligible, and are not included.) With 120 MPI processes
running on 480 CPUs, the overhead for copying 6 full 3D fields and
3 2D fields, at each of 480 time steps, is approximately 12 seconds
over a 2100 second calculation, or a little over 0.5 percent. The total
amount of data copied is about 0.5 TB. (These timings are from initial
test runs. During the season, the model integration time step was cut
in half, so the total number of time steps was 960, and we copied about
900 GB per run.)

Although the destination of the data copies is logically a single
shared memory buffer allocated by ibcolumbia, the physical loca-
tion of the memory pages is determined by the default “first touch”
placement policy. We can touch each page of the shared memory
buffer in an initialization routine in ibcolumbia so that physi-
cal memory resides on the same processors where we have assigned
ibcolumbia. Alternatively, we can let each MPI process have “first
touch” and thus distribute the shared memory’s physical pages across
the entire simulation’s CPU set. We chose the latter, faster, strategy.

A concern with this choice is whether the additional memory
pages on the simulation CPUs, and accessing these pages from
ibcolumbia during its processing phase, will result in indirect ef-
fects on the model runtime; these effects were not captured with the
timer calipers described above. We investigated such potential inter-
ference effects by looking at the overall run times of the model, before
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Fig. 3. Overall run times, with and without concurrent visualization.

and after the concurrent visualization was incorporated. Results are
shown in Figure 3. Unfortunately, the only long term overall timing
data available include some pre- and post-model run activities which
involved a lot of disk activity, so the timings are somewhat variable.
Nevertheless, it is apparent that there is no systematic increase in run-
time when the concurrent visualization was activated part way through
the season. In fact, there is a slight decrease in the mean run times with
visualization. We believe this just shows that any effects we may have
produced are slight, and that the data are insufficient to resolve them.

9.3 Visualization Pipeline Performance

We instrumented ibchunnel and measured its performance during
a test run that used 480 integration time steps that ran at a 2.7 second
(wall clock) rate. Of the 2.7 seconds, 0.3 seconds were lost due to
the staggered finishing of the simulation processors, 1.8 seconds were
spent copying and vertically integrating the field data, and 0.1 seconds
were spent sending the data and waiting for acknowledgment, leav-
ing 0.5 seconds of idle time. If the time steps took the 2.5 seconds
as measured for production runs, the idle time would be 0.3 seconds.
Parallelizing the data copying and integration step would likely be nec-
essary if more data were needed for visualization.

9.4 Application Impact

The real-time remote visualization aspect of our system had limited
impact. Due to problems at the remote site, the MPEG streams were
only sent to the MAP’05 researchers during a few test runs. Instead,
the production runs sent the animations to our local hyperwall so we
could monitor the system’s progress. In addition, we were able to show
real-time production runs at the SC’05 conference in Seattle.

However, post-run user analyses of our high temporal resolution an-
imations had two significant positive impacts on the MAP’05 project.
One was the discovery of fast-moving pressure waves that appear to
be caused by start-up transients. Earlier post-production visualiza-
tions did not capture these transients in sufficient detail for them to
be noticed. Our system also helped find the solution to a numeric in-
stability problem that occurred before our system was added to the
production runs. Test runs of our system showed how the instabil-
ity grew from a single cell to the entire domain over just a few time
steps. Our high temporal resolution output captured this behavior and
immediately suggested the instability’s cause.

10 THE MITGCM HIGH-RESOLUTION GLOBAL

OCEAN MODEL

We have also applied our concurrent visualization pipeline to a high-
resolution global ocean model, the MITgcm, developed by the ECCO
Consortium [8]. Like GEOS4, the MITgcm is a hybrid MPI/OpenMP
code which runs on a staggered latitude/longitude grid at various res-
olutions. Initially, we deployed our concurrent visualization facility
on several MITgcm 1/8 degree model runs distributed over 480 pro-
cessors. In these runs, the global domain is 2880×2176×50, or about
313 million grid points. Thus each 3D scalar field requires about 2.5
GB of storage, and a horizontal slice occupies about 50 MB. Figure 5
shows a frame from the simulation output.

The MITgcm uses a two-dimensional domain decomposition,
breaking the domain into full-depth tiles in both zonal and merid-
ional directions, and supplying ghost cells along all four shared tile

faces. Our data copying routine that is linked with the simulation code
needed to be modified accordingly.

The MITgcm is primarily used for relatively long term climate stud-
ies, but needs to resolve the important meso-scale turbulent eddy pro-
cesses which underly energy and fresh water transport. For these rea-
sons, the model spatial and temporal discretization is very refined, but
the runs are long—yielding potentially enormous output data. Integra-
tion time steps for the 1/8 degree model are 5 minutes (300 seconds),
and for performance and disk capacity reasons only 3-day average field
data are output to disk during runs that may simulate months to years
of oceanic circulation.

10.1 Month-Long Run

Using our concurrent visualization pipeline, we generated a set of
eight animations that captured every time step of a single simulation of
the month of February 2002. These animations contain 8000 frames
each, and represent an 864-fold increase in temporal resolution com-
pared to animations created by post-processing normal run output. Our
system was able to handle the higher resolution data because we only
copied 2D horizontal slices from the simulation, and because the sim-
ulation used more wall clock time per time step (4.4 seconds) than the
GEOS4 simulation.

These high temporal resolution visualizations have revealed hith-
erto unseen model dynamics that have given new insights to the ocean
modelers. For example, dramatic diurnal variations in the mixing layer
depth shown by our animations are now receiving increased attention
as an important factor in the air-sea exchange of CO2, heat, and mo-
mentum.

10.2 Year-Long Run

We have used our system with a single year-long MITgcm simulation
run on four 512-processor Columbia nodes, using 1920 processors in
total for the simulation. While the simulation has just completed, we
do have some initial results. For this run, we generated many more
visualizations than previous runs. We extracted 2D slices from 24
fields and showed both a global and North Atlantic view of each field,
for a total of 48 visualization streams. We captured every simula-
tion time step, as before. We modified our visualization system so it
collects data from each of the four Columbia nodes and forwards the
data to chunnel. A new program running on chunnel collects the
per-processor domains from the nodes and reassembles them into the
overall domain.

Since this was not a time-critical production run, we modified our
system to pause the simulation if the visualization fell behind instead
of dropping frames. The extraction and visualization parts of the sys-
tem nearly always kept up with the simulation even though it was pro-
cessing much more data per time step at a faster time step rate than
the first MITgcm run. Using 1920 instead of 480 processors decreased
the minimum wall clock time step time (when I/O is not being done)
to an average of 2.8 seconds; the time ranged from 2.7 to 3.2 seconds.
Initial measurements show that we only slow the simulation down for
about 14% of the frames, and increase the overall run time by 3%. We
feel that this is an acceptable slowdown, as do our collaborators. In
addition, since this was the first large run using this configuration, we
believe that the simulation delay could be reduced or eliminated by
further optimizations.
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Fig. 4. Typical output display configuration, showing the same simulation and time step as Figure 1, where Hurricane Wilma is approaching
Florida. The top row shows (left to right) shows OMGA, the vertical velocity of the pressure grid over time; PRECIP, the total precipitation; and
PS, the surface pressure. The middle row shows three views of Q, the specific humidity, integrated vertically. The bottom row shows U, V, and
VelocityMagnitude, respectively the east-west component, north-south component, and magnitude of the near-surface wind velocity vector. The
OMGA, U, V, and VelocityMagnitude fields are 2D slices from the 3D field that show the values one layer above the bottom layer; PRECIP and PS
are 2D fields.

The MPEG part of the system often fell behind the simulation. Sev-
eral of the visualizations showing the global view had the MPEG en-
coding and frame compression many frames behind. No data were
lost because the MPEG part of the system is decoupled from the ear-
lier part of the pipeline: it reads frames from each node’s local disk,
which has room for thousands of frames. The slow encoding did affect
the MPEG streaming part of the pipeline because the MPEG streams
were not synchronized. We believe the slow encoding and compres-
sion were due to congestion on the file server, chunnel.

In addition to the frames and MPEG animations, we also saved a 2D
slice of floating-point data from a 500×500 portion of the grid which
shows the North Atlantic for each of the 24 fields visualized. This
will allow more complex visualizations, such as LIC, to be computed
after the simulation has completed. Our current visualization cluster
does not have sufficient CPU or graphics capability to compute these
visualizations at the rate required.

Overall, the 110-hour run extracted and visualized a total of 63 TB
of data from the simulation, which corresponds to a sustained data rate
of 215 MB/second when no I/O is being performed. We saved 2.5 TB
of North Atlantic floating-point data and a total of 5 million frames
that would require 12 TB of storage if uncompressed.

11 CONCLUSION AND FUTURE WORK

We have presented a concurrent visualization system that was special-
ized for a demanding production application, the GEOS4 simulation,
that produced hurricane track forecasts during the 2005 hurricane sea-
son. Our system was able to show the simulation’s progress to distant
researchers using a moderate-speed network link. We have shown that
our implementation did not adversely affect the simulation’s reliabil-

ity or run time. The high temporal resolution animations produced by
our system led to important new insights with both the GEOS4 and
MITgcm applications.

We are currently enhancing our system by adding a variety of vi-
sualization and feature detection techniques. We are also working to
connect one of our rendering platforms directly to the Columbia com-
pute nodes using InfiniBand. This will avoid our current 100-baseT
bottleneck in the pipeline and allow full 3D fields to be transferred to
the graphics nodes, which will enable using other techniques such as
volume rendering. This will be important when working with other
expected new applications where 3D field visualizations are essential.
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